

SalientSleepNet: Multimodal Salient Wave Detection Network for Sleep Staging

Ziyu Jia, Youfang Lin, Jing Wang, Xuehui Wang, Peiyi Xie and Yingbin Zhang

Sleep

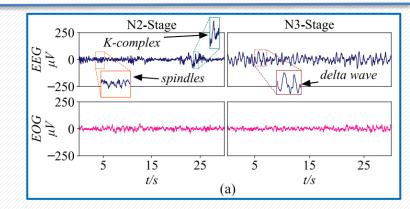
Sleep takes up nearly a third of our life, and the quality of sleep has a direct influence on our physical and mental health.

Sleep Staging

- Five sleep stages: Wake (W), Non-REM 1 (N1), Non-REM 2 (N2), Non-REM 3 (N3), and REM.
- Recorded signals: polysomnography (PSG) (Include EEG, EOG, and other signal modalities).
- American Academy of Sleep Medicine (AASM) sleep standard^[1].
- ◆ It is important for assessing sleep quality and diagnosing sleep disorders.

Sleep Staging Methods

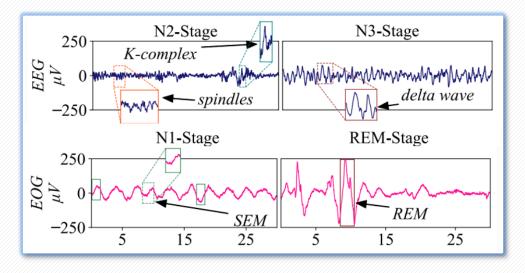
- Manual sleep staging:
- Several sleep experts classify sleep stages.
- ◆ Labor-intensive and time-consuming.
- Automatic sleep staging based on machine learning:
- Machine learning methods (especially deep learning methods).
- ◆ Improve the efficiency of sleep staging.



Automatic Sleep Staging

- Traditional machine learning methods:
- $SVM^{[2]}$ and $RF^{[3]}$, etc.
- Rely on hand-engineered features that require a lot of prior knowledge.
- CNN and RNN:
- ◆ DeepSleepNet^[4], XSleepNet^[5], etc.
- CNN extracts time-invariant features.
- RNN extracts sleep transition rules among sleep stages.
- Do not make full use of salient wave features and RNN is difficult to tune and optimize.

• C1: Directly capture salient waves from raw signals.



Different sleep stages have different salient waves^[1].

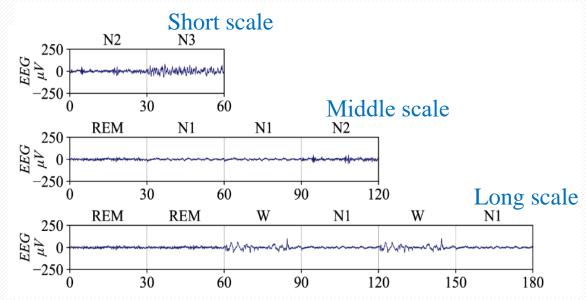
N2 stage: Spindle wave, K-complex wave N3 stage: Delta wave

N1 stage: SEM wave

REM stage: REM wave

Some methods use time-frequency images as network input to *capture salient waves indirectly*^[5]. This may cause *partial information loss*.

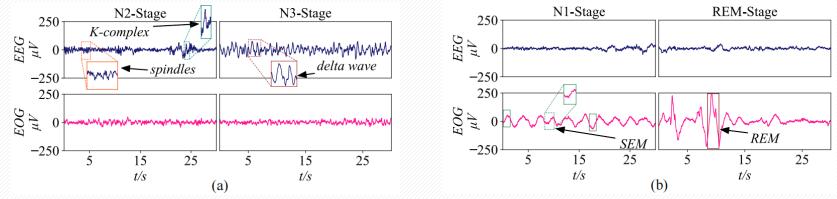
• C2: Effectively use multi-scale sleep transition rules.



- Changing patterns of different sleep stages are summarized as transition rules in AASM.
- Experts determine the current sleep stage combined with its neighboring sleep stages.
 - Transition rules have multi-scale characteristics.

Some methods use RNN to learn transition rules^[4], which is **difficult to turn and optimize**.

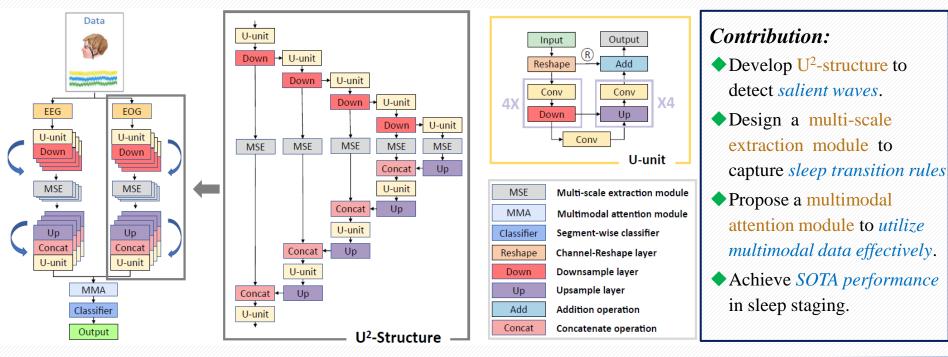
• C3: Effectively utilize multimodal signals



- Different modalities have different contributions to distinguish the sleep stages.
- EEG signals has more contribution to classify N2 and N3 stages. EOG signals contribute more to classify N1 and REM stages.

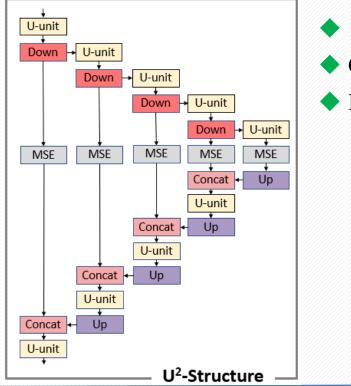
Existing works ignore that the contribution of each modality to the identification of specific sleep stages is different^[5].

SalientSleepNet: Multimodal Salient Wave Detection Network for Sleep Staging

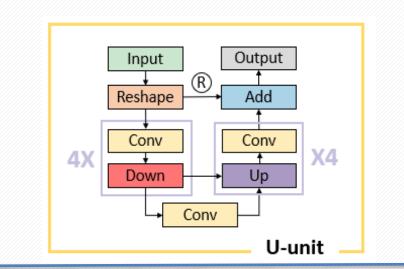


Methods

S1: U²-structure for salient wave detection

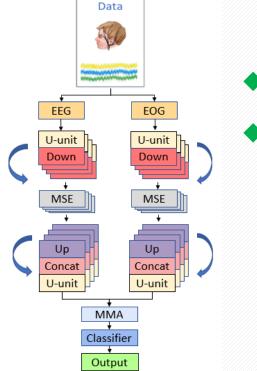


- 1D encoder-decoder structure
- Composed of multiple nested U-units.
- Inspired by U²-Net in salient object detection of images^[6].



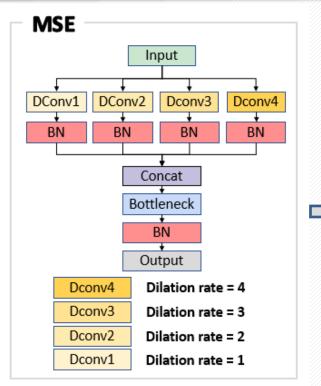
Methods

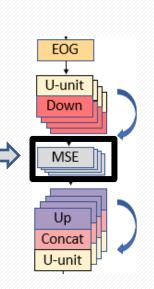
S1: U²-structure for salient wave detection



- Two-stream U²-structure.
- Raw EEG signals and EOG signals are input into two independent U²-structures.

Methods *S2:* MSE for learning multi-scale sleep transition rules

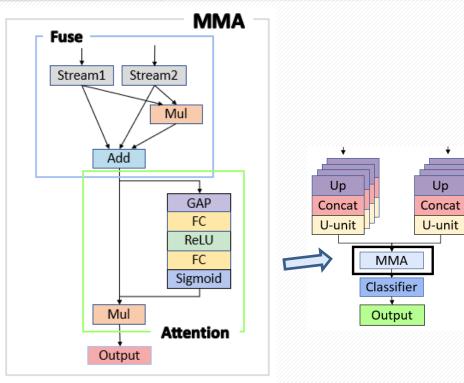




- Multi-Scale Extraction module (MSE) for explicit multi-scale sleep transition rules learning.
- Dilated convolutions with different dilation rates to capture features in different scales of receptive fields.
- Bottleneck layer for reducing parameters.
- Each encoder followed by a MSE.

Methods

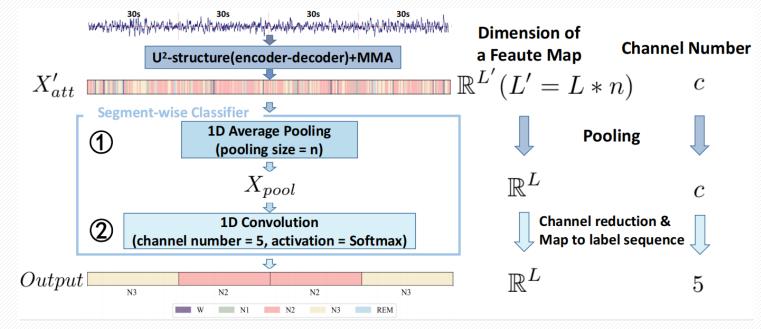
S3: MMA for multimodal data learning



- MultiModal Attention module (MMA) adaptively captures the important features of different modalities for certain sleep stages.
- Modality fusion component for fusing the feature maps from two streams.
- Channel-wise attention component for strengthening the most important features in an implicit way for certain sleep stages.

Segment-wise Classifier

Mapping the pixel-wise feature map to a segment-wise predict label sequence.



Dataset:

Sleep-EDF-39 & Sleep-EDF-153^{[7][8]}

- Sleep-EDF-39 consists of 42308 sleep epochs from 20 healthy subjects (10 males and 10 females) aged 25-34.
- ◆ Sleep-EDF-153 consists of 195479 sleep epochs from 78 healthy subjects aged 25-101.
- ◆ Adopt Fpz-Cz EEG and ROC-LOC EOG channels.

Baseline Methods:

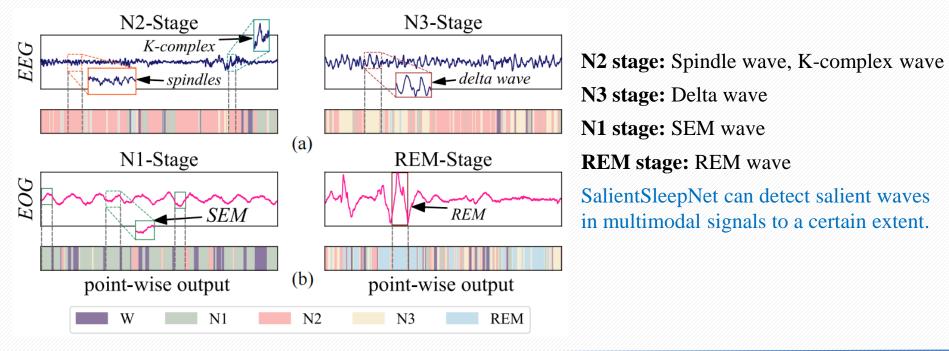
- ◆ SVM^[2] & RF^[3]: Traditional machine learning method.
- **DeepSleepNet**^[4]: Utilize CNN to extract time-invariant features and BiLSTM to learn the transition rules among sleep stages.
- **SeqSleepNet**^[9]: Composed of parallel filterbank layers for preprocessing the time-frequency images and bidirectional RNN to encode sleep sequential information.
- SleepEEGNet^[10]: Extract time-invariant features from the sleep signals and capture long short-term context dependencies.
- SleepUtime^[11]: Map sequential inputs of arbitrary length to sequences of class labels on a freely chosen temporal scale.
- **TinySleepNet**^[12]: Lightweight mixed model of CNN and unidirectional RNN.

Comparison with the state-of-the-art models:

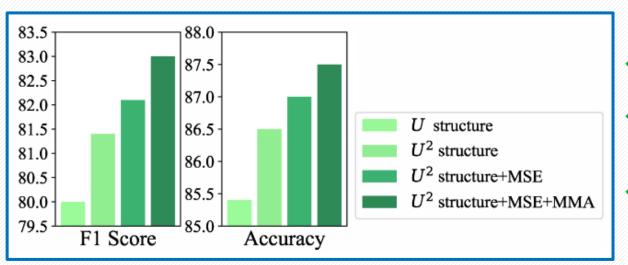
	Parameters	Sleep-EDF-39 dataset							Sleep-EDF-153 dataset						
Method		Overall results		F1-score for each class					Overall results		F1-score for each class				
		F1-score	Accuracy	Wake	N1	N2	N3	REM	F1-score	Accuracy	Wake	N1	N2	N3	REM
SVM	<0.1M	63.7	76.1	71.6	13.6	85.1	76.5	71.8	57.8	71.2	80.3	13.5	79.5	57.1	58.7
RF	<0.1M	67.6	78.1	74.9	22.5	86.3	80.8	73.3	62.4	72.7	81.6	23.2	80.6	65.8	60.8
DeepSleepNet	21M	76.9	82.0	85.0	47.0	86.0	85.0	82.0	75.3	78.5	91.0	47.0	81.0	69.0	79.0
SeqSleepNet	_	79.7	86.0	91.9	47.8	87.2	85.7	86.2	78.2	83.8	92.8	48.9	85.4	78.6	85.1
SleepEEGNet	2.1M	79.7	84.3	89.2	52.2	86.8	85.1	85.0	77.0	82.8	90.3	44.6	85.7	81.6	82.9
SleepUtime	1.1M	79.0	_	87.0	52.0	86.0	85.0	82.0	76.0	_	92.0	51.0	84.0	75.0	80.0
TinySleepNet	1.3M	80.5	85.4	90.1	51.4	88.5	88.3	84.3	78.1	83.1	92.8	51.0	85.3	81.1	80.3
SalientSleepNet	0.9M	83.0	87.5	92.3	56.2	89.9	87.2	89.2	79.5	84.1	93.3	54.2	85.8	78.3	85.8

Table 1: Performance comparison of the state-of-the-art approaches on Sleep-EDF-39 and Sleep-EDF-153 datasets. "–" indicates the corresponding value not provided in the baseline models.

Visualization: point-wise outputs of U²-structure



Ablation Experiment:



- U structure (basic): A two-stream U structure without nested U-units, MSE, and MMA.
- U2 structure: The nested U-units are applied to the basic model.
- U2 structure+MSE: Add the multiscale extraction modules based on U2 structure.
- U2 structure+MSE+MMA (SalientSleepNet): Add the multimodal attention module instead of a simple concatenate operation based on U2+MSE model.

Contribution:

- Our work is the first attempt to borrow the U²-Net from the visual saliency detection domain to sleep staging.
- ◆ SalientSleepNet can effectively detect and fuse the salient waves in multimodal data.
- ◆ SalientSleepNet can extract multi-scale transition rules among sleep stages.
- Experiment results show that SalientSleepNet achieves state-of-the-art performance.
- The parameters of our model are the least among the existing deep learning models.

Prospect:

• The proposed model is a general-framework for multimodal physiological time series.

References

- [1] C. Iber, S. Ancoli-Israel, A. L. Chesson, S. F. Quan, et al. *The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specififications*, volume 1. American academy of sleep medicine Westchester, IL, 2007.
- [2] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector machines. *IEEE Intelligent Systems and their applications*, 13(4):18–28, 1998.
- [3] L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
- [4] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. Deepsleepnet: A model for automatic sleep stage scoring based on raw single-channel eeg. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 25(11):1998–2008, 2017.
- [5] H. Phan, O. Y Ch'en, P. Koch, A. Mertins, and M. De Vos. Xsleepnet: Multi-view sequential model for automatic sleep staging. arXiv preprint arXiv:2007.05492, 2020.
- [6] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand. U2-net: Going deeper with nested u-structure for salient object detection. *Pattern Recognition*, 106:107404, 2020.
- [7] B. Kemp, A. H. Zwinderman, B. Tuk, H. AC Kamphuisen, and J. JL Oberye. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg. *TBME*, 47(9):1185–1194, 2000.
- [8] A. L. Goldberger, L. AN Amaral, L. Glass, J. M. Hausdorff, P. Ch Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. *circulation*, 101(23):e215–e220, 2000.
- [9] Huy Phan, Fernando Andreotti, Navin Cooray, Oliver Y Chén, and Maarten De Vos. Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 27(3):400–410, 2019.
- [10] S. Mousavi, F. Afghah, and U R. Acharya. Sleepeegnet: Automated sleep stage scoring with sequence to sequence deep learning approach. *PloS one*, 14(5):e0216456, 2019.
- [11] M. Perslev, M. Jensen, S. Darkner, P. J. Jennum, and C. Igel. U-time: A fully convolutional network for time series segmentation applied to sleep staging. In *NIPS*, pages 4415–4426, 2019.
- [12] A. Supratak and Y. Guo. Tinysleepnet: An effificient deep learning model for sleep stage scoring based on raw single-channel eeg. In *EMBC*, pages 641–644. IEEE, 2020.

Beijing Jiaotong University

Thanks!

