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Introduction

Brain-computer Interface (BCI): 
Establishes the connection between the human brain and outside world.

Based on electrophysiological and hemodynamic brain activity.

electroencephalography(EEG):
One of electrophysiological brain activities.

Advantage: low cost, low risk

motor imagery (MI):
One of the typical EEG based BCI paradigms.

A person imagines moving different parts of the body or different control 

commands on the instruments.
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Related Work

·traditional methods: 

◆ spatial features: CSP[1], FBCSP[2]

◆ time-frequency features: Fourier transform, wavelet transform

·deep learning models:

◆ Shallow ConvNet [3]

◆ Deep ConvNet[3]

◆ EEGNet [4]

[1] Fukunaga, K.: Introduction to statistical pattern recognition (1990)

[2] Ang, K.K., et alC.: Filter bank common spatial pattern(fbcsp) in brain-computer interface. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE 

World Congress on Computational Intelligence). pp.2390–2397. IEEE (2008) 

[3] Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for eeg decoding and visualization. Human brain mapping 38(11), 5391–5420 (2017) 

[4] Lawhern, V.J., et al.: Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces. Journal of neural engineering 15(5), 056013 (2018)
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Challenge

EEG signals: non-linearity, non-stationarity and low 

signal-noise ratio.

traditional methods: need manual feature extraction.

deep learning models: filter the raw EEG signals in 

specific frequency band.
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Challenge

Subject difference: the best convolution scale

varies with different subject.

Time difference: the best convolution scale

differs from time to time.
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MMCNN Architecture

Multi-branch Multi-scale Convolution Neural Network

Contribution:

◆ Solve the problem: subject 

difference and time difference.

◆ Input unfiltered data.

◆ The importance of different 

channels is different.

◆ Obtain the superior result on BCI 

Competition IV 2b and 2a dataset
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MMCNN Architecture

EEG Inception block: implement the multi-scale convolution
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MMCNN Architecture

Residual block[5]: avoid network degradation as 

the number of network layers increases

[5] He, K., Zhang, et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and 

pattern recognition. pp. 770–778 (2016)
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MMCNN Architecture

Squeeze and Excitation block: pay more attention to adaptive extraction of important features

Squeeze: tackles the issue of exploiting channel dependencies
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Excitation: learns sample-specific activations for each channel 

MMCNN Architecture
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Experiments

Datasets

BCI Competition IV 2b dataset1: a binary 

classification problem dataset with MI of 

the left-hand movement and the right-hand 

movement. The dataset includes 9 subjects.

BCI Contest IV 2a dataset2: contains data 

of 9 subjects performing motor imagery 

classification.

1:http://www.bbci.de/competition/iv/#dataset2b

2:http://www.bbci.de/competition/iv/#dataset2a
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Experiments

Baseline:

◆ Deep ConvNet[3]: A classic end-to-end model for EGG classification with four convolution-

max-pooling blocks.

◆ Shallow ConvNet[3]: The layers in the Shallow ConvNet is less than the Deep ConvNet.

◆ Hybrid ConvNet[3]: Hybrid ConvNet combines the structure of the Deep ConvNet and the 

Shallow ConvNet. 

◆ EEGNet[4]: A deep learning model utilizes a single-scale neural network with deep convolution 

and separable convolution.

◆ MSFBCNN[6]: A parallel filter bank convolutional neural network.

[3] Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for eeg decoding and visualization. Human brain mapping 38(11), 5391–5420 (2017) 

[4] Lawhern, V.J., et al.: Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces. Journal of neural engineering 15(5), 056013 (2018) 

[6] Wu, H., et al.: A parallel multiscale filter bank convolutional neural networks for motor imagery eeg classification. Frontiers in Neuroscience 13, 1275 (2019) 
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Result of BCI Competition IV 2a
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Result of BCI Competition IV 2b
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Ablation Study

Ablation Study on Multi-scale Convolution Ablation Study on different blocks
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The impact of different EEG channels

◆ the importance of different channels to 

improve the classification is different

◆ the combination of C4 and C3 can 

achieve a better result
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Conclusion

Contribution: 

◆ Solve the problem of subject difference and time difference.

◆ The results are superior to the state-of-the-art models on two public BCI Competition datasets 

with unfiltered data.

◆ Prove the importance of different channels to improve the classification is different.

Prospect:

◆ The proposed model is a general framework for EEG signal classification, we can apply it to 

classify other BCI tasks, such as emotion recognition.

◆ The model is end-to-end, we can apply it to wearable equipment.
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