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Emotion:
• Emotion is a mental and physiological state which results from many senses and thoughts;

• Emotion recognition plays an increasingly important role in multiple areas;

• Multimedia materials stimulate participants and induce emotions.

Emotion recognition based on external behavior:
• People can disguise their facial expression, sound, and so on;

• External behavior cannot reflect a real emotional state.

Emotion recognition based on physiological signals:
• Physiological signals reflect emotion objectively;

• Multi-modal physiological signals contain more emotion information.

Introduction



· Traditional machine learning methods:

◆ Require a lot of prior knowledge, such as SVM[1].

· Multi-domain features extraction:

◆ Extract spatial-temporal domain features or spatial-spectral domain features, such as STRNN[2];

◆ Ignore the complementarity among spatial-spectral-temporal domain features.

· Multi-modal physiological signals:

◆ Only model one of the heterogeneity or correlation of multi-modal physiological signals, such as 

MMResLSTM[3].

· SST-EmotionNet[4]:

◆ Extract spatial-spectral-temporal domain features;

◆ Image-like maps ignore the functional connectivity of the brain and may introduce noise;

◆ Does not use multi-modal physiological signals. 
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Related Work
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C1: How to utilize the complementarity among spatial-spectral-temporal 

domain information efficiently.

◆ Different activation degree;

◆ Spatial-temporal domain information and spatial-spectral domain information are complementary.

Challenge

Brain Topographic Maps
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C1: How to utilize the complementarity among spatial-spectral-temporal 

domain information efficiently.

Different EEG Representation

· Image-like maps:

◆ Extract spatial-spectral-temporal domain features;

◆ May introduce noise;

◆ Can not reflect functional connectivity.

· Brain graph representation:

◆ Reflect the topological relationship of the brain;

◆ No noise introduced.

Challenge



· Heterogeneity: 

◆ Differences among the attributes of various signals collected from different organs;

◆ Existing works use different feature extractors to capture the heterogeneity.

· Correlation: 

◆ The relationship among channels in the same modality or in different modalities;

◆ Existing works usually feed a new data representation to a deep neural network to capture 

the correlation, such as GSCCA[5].
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C2: How to model heterogeneity and correlation among different modalities simultaneously.

There are differences in the waveform and 

amplitude between EEG and ECG signals.

Challenge
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The whole process for multi-modal emotion recognition.Methods
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C1: How to utilize the complementarity among spatial-spectral-temporal domain 

information efficiently?

S1: We construct spatial-temporal graph sequence and spatial-spectral graph sequence 

to extract the spatial-spectral-temporal domain features of physiological signals.

◆ Calculate the mutual information between 

channels to get the adjacency matrix;

◆ Construct spatial-temporal graph and 

spatial-spectral graph;

◆ Construct spatial-temporal graph sequence 

and spatial-spectral graph sequence;

◆ Use GRU to extract time-domain and 

frequency-domain dependencies.

Methods
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C2: How to model heterogeneity and correlation among different modalities 

simultaneously?

S2: We use GTN to model the heterogeneity of multimodal data, and GCN to 

model the correlation.

· Model the heterogeneity: 

◆ Use GTN to extract multiple meta-paths 

automatically.

· Model the correlation: 

◆ Use GCN to aggregate neighborhood nodes.

Methods
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DEAP dataset

◆ A total of 32 subjects;

◆ Each participant needs to undergo 40 trials;

◆ Collect 60s signals for each trial;

◆ 32-channel EEG signals and 8-channel 

peripheral physiological signals (PPS);

◆ PPS include EOG, EMG, GSR, BVP, 

respiration, and temperature;

◆ Music videos are rated on valence and arousal 

from 1 to 9.

MAHNOB-HCI dataset

◆ A total of 27 subjects;

◆ Each participant needs to undergo 20 trials;

◆ The length of video clips is between 34.9s and 

117s;

◆ 32-channel EEG signals and 6-channel PPS;

◆ PPS include ECG, GSR, respiration, and 

temperature;

◆ Video clips are rated on valence and arousal 

from 1 to 9.

Experiments-Dataset
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◆ MLP[6]: Multilayer perceptron is a classical artificial neural network.

◆ SVM[7]: Support vector machine classifier with radial basis function kernel.

◆ GCN[8]: Graph convolutional network extracts spatial domain information from signals through

spectral graph convolution.

◆ DGCNN[9]: Dynamical graph convolutional neural network can dynamically learn correlation among

channels.

◆ MM-ResLSTM[3]: Multi-modal residual LSTM can capture the temporal domain information and

spatial domain information of multi-modal signals by sharing the LSTM weight and residual network.

◆ ACRNN[10]: Attention based convolutional recurrent neural network uses CNN with channel-wise

attention mechanism to capture spatial domain information, and utilizes LSTM with self-attention

mechanism to capture temporal domain information.

◆ SST-EmotionNet[4]: Spatial-spectral-temporal based attention 3D dense network integrates various

features in a unified network framework, and uses 3D attention mechanism to capture local pattens in

EEG signals.

Experiments-Baselines
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Comparison with the state-of-the-art models

HetEmotionNet achieves the best performance in DEAP and MAHNOB-HCI datasets.

Experiments-Results
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Experiments-Ablation studies in DEAP dataset 

①Ablation studies on 

different components

②Ablation studies on 

fusing different modalities  

③Ablation studies on 

two-stream structure
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· Contributions: 

◆ We propose a novel graph-based two-stream structure composed of the spatial-temporal stream

and the spatial-spectral stream which can simultaneously fuse spatial-spectral-temporal domain

features of physiological signals in a unified deep neural network framework.

◆ Each stream consists of a GTN for modeling the heterogeneity, a GCN for modeling the correlation,

and a GRU for capturing the temporal or spectral dependency.

◆ Extensive experiments are conducted on two benchmark datasets to evaluate the performance of

the proposed model. The results indicate the proposed model outperforms all the state-of-the-art

models.

Conclusion

· Prospects: 

◆ The proposed model is a general-framework for multivariate physiological time series.

◆ It can be applied to time series classification, prediction, and other related fields.
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