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Introduction

Sleep:
• About a third of life is spent in sleep, which directly influences human health;

• Sleep staging is important for assessing sleep quality and diagnosing sleep disorders.

Artificial Sleep Stage Classification:
• Sleep experts identify sleep states based on sleep standard and polysomnography;

• It’s a tedious and time-consuming task;

• The variability and subjectivity of sleep experts affect the classification results.

Automatic sleep stage classification:
• Improve the efficiency of traditional sleep stage classification;

• Have important clinical value.



Related Work

Sleep Stage Classification

· Traditional machine learning methods:

◆ SVM and RF, etc.

◆ Need to extract hand-crafted features, which 

requires a lot of prior knowledge.

· CNN and RNN:

◆ FDCCNN[1], SeqSleepNet[2], DeepSleepNet[3], etc.

◆ Their input must be grid data (image-like).
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Motivation & Challenge

· Modeling the functional connections of the brain:

◆ GCNs have shown advanced performance in addressing graph structure data[4,5].

◆ Existing work usually use fixed graph structure, but sleep is a dynamic process.

◆ Humans’ knowledge of the human brain is limited.
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C1: How to determine a suitable graph structure for sleep stage classification.

Grid data                     Graph data

· Limitations of grid data:

◆ Ignore the connections among brain regions.

◆ Brain regions are in non-Euclidean space,

graph is the most appropriate data structure

to indicate brain connection.



Motivation & Challenge

◆ During sleep, the spatial characteristics among brain regions are different.

◆ In the temporal dimension, there are transition rules between sleep stages.
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C2: How to effectively extract spatial-temporal features.

The transition rules summarized from 

the AASM sleep scoring manual[6]

◆ C2.1: How to effectively apply graph convolution to sleep stage classification.

◆ C2.2: How to exploit the sleep transition rules between neighboring stages.



Methods
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GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks 

Contribution:

◆The first attempt to apply ST-GCN

for sleep stage classification.

◆A novel adaptive sleep graph 

learning mechanism.

◆We design a spatial-temporal 

convolution.

◆Achieves SOTA performance in 

sleep stage classification.



Methods
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C1: How to determine a suitable graph 

structure for sleep stage classification?

S1: We propose a novel adaptive sleep graph 

learning mechanism.

◆ Integrated with ST-GCN simultaneously in 

a unified network architecture.

◆ Dynamically construct adjacency matrix A.

◆ Utilize the second term in the loss function 

to control the sparsity of graph A.



Methods
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C2: How to extract spatial-temporal features?

S2: We design a Spatial-Temporal Graph Convolution architecture.

a) Spatial dimension: use graph convolution to extract spatial features.

◆ Use graph convolution based on spectral graph theory.

◆ Employ the Chebyshev expansion of graph Laplacian to reduce computational complexity.



Methods
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C2: How to extract spatial-temporal features?

S2: We design a Spatial-Temporal Graph Convolution architecture.

b) Temporal dimension: employ CNN to perform convolution operation to capture the 

sleep transition rules.

c) Spatial-Temporal Attention: automatically extract valuable information.
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Montreal Archive of Sleep Studies (MASS)-SS3 dataset [7]

◆ PSG recordings from 62 healthy subjects (28 male and 34 female).

◆ Experts classify these PSG recordings into five sleep stages (W, N1, N2, N3, and REM) 

according to AASM standard.

◆ We extract DE features from the raw signal.

Dataset:

Stage W N1 N2 N3 REM Total

Samples 6357 4829 29777 7651 10566 59180

Ratio 10.7% 8.2% 50.3% 12.9% 17.9% 100%

Experiments

Number of samples for each sleep stage
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◆ [Dong et al., 2017][8]: A mixed neural network, which combines multilayer perceptron (MLP)

and LSTM, and also compare its performance with RF and SVM.

◆ [Supratak et al., 2017][3]: A model combines CNN and BiLSTM to capture both time-

invariant features and transition rules among sleep stages.

◆ [Chambon et al., 2018][9]: A temporal sleep stage classification use multivariate and

multimodal time series.

◆ [Phan et al., 2019][2]: SeqSleepNet changes the single sleep stage classification problem into a

sequence-to-sequence classification problem by using attention-based bidirectional RNN

(ARNN) and RNN.

◆ [Sun et al., 2019][10]: A hierarchical neural network, which learns comprehensive features and

sequence respectively.

◆ [Jiang et al., 2019][11]: Robust sleep stage classification which uses multimodal decomposition

and Hidden Markov Model (HMM) -based refinement.

Baseline:

Experiments
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Experiments

Comparison with the state-of-the-art models:



Experimental Analysis:
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◆ Adjacency matrix: The proposed adaptive sleep graph learning is superior to all fixed 

graphs.

◆ Number of input sleep stage networks Tn : The performance improves as Tn increases, 

and the best accuracy is achieved when Tn = 5.

Experiments
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Contribution: 

◆ To the best of our knowledge, it is the first attempt to apply ST-GCN for automatic sleep

stage classification. Moreover, we propose a novel adaptive sleep graph learning mechanism,

which is integrated with ST-GCN simultaneously in a unified network architecture.

◆ We design a spatial-temporal convolution, which consists of graph convolutions for capturing

spatial features and temporal convolutions for capturing the transition among different sleep

stages.

◆ Experimental results demonstrate that the GraphSleepNet achieves state-of-the-art 

performance in sleep stage classification.

Prospect: 

◆ The proposed model is a general-framework for multivariate physiological time series. 

◆ It can be applied to time series classification, prediction and other related fields.

Conclusion
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