

GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification

Ziyu Jia, Youfang Lin, Jing Wang, Ronghao Zhou, Xiaojun Ning, Yuanlai He and Yaoshuai Zhao

Introduction

Sleep:

- About a third of life is spent in sleep, which directly influences human health;
- Sleep staging is important for assessing sleep quality and diagnosing sleep disorders.

Artificial Sleep Stage Classification:

- Sleep experts identify sleep states based on sleep standard and polysomnography;
- It's a tedious and time-consuming task;
- The variability and subjectivity of sleep experts affect the classification results.

Automatic sleep stage classification:

- Improve the efficiency of traditional sleep stage classification;
- Have important clinical value.

Related Work

Sleep Stage Classification

- Traditional machine learning methods:
- ◆ SVM and RF, etc.
- Need to extract hand-crafted features, which requires a lot of prior knowledge.
- CNN and RNN:
- ◆ FDCCNN^[1], SeqSleepNet^[2], DeepSleepNet^[3], etc.
- Their input must be grid data (image-like).

Motivation & Challenge

• Limitations of grid data:

- ◆ Ignore the connections among brain regions.
- Brain regions are in non-Euclidean space, graph is the most appropriate data structure to indicate brain connection.

- Modeling the functional connections of the brain:
- GCNs have shown advanced performance in addressing graph structure data^[4,5].
- Existing work usually use fixed graph structure, but sleep is a dynamic process.
- Humans' knowledge of the human brain is limited.

C1: How to determine a suitable graph structure for sleep stage classification.

Motivation & Challenge

C2: How to effectively extract spatial-temporal features.

• During sleep, the spatial characteristics among brain regions are different.

◆ In the temporal dimension, there are transition rules between sleep stages.

Sleep Stage Pair	Transition Pattern*	Rule	Differentiating Features	-		
	N1-{N1,N2}	5.A.Note.1	Arousal, K-complexes, sleep spindles	_		
N1-N2 N1-R	$(N2-)N2-\{N1,N2\}(-N2)$ 5.B.1 5.C.1.b		K-complexes, sleep spindles Arousal, K-complexes, sleep spindles			
	N2-{N1-N1,N2-N2}-N2	5.C.1.c	Alpha, body movement, slow eye movement			
	R-R-{N1,R}-N2	7.B 7.C.1.b 7.C.1.c	Chin EMG tone Chin EMG tone Chin EMG tone, arousal, slow eye movement	The transition rules summarized fro the AASM sleep scoring manual ^[6]		
	$R-{N1-N1-N1,R-R-R}$	7.C.1.d	Alpha, body movement, slow eye movement			
N2-R	R-R-{N2,R}-N2	7.C.1.e	Sleep spindles	-		
	$(N2-)N2-\{N2,R\}-R(-R)$	7.D.1 7.D.2 7.D.3	Chin EMG tone Chin EMG tone, K-complexes, sleep spindles K-complexes, sleep spindles			

*Curly braces indicate choice between the stages or stage progressions in the set, and parentheses indicate optional epochs.

◆ *C*2.1: How to effectively apply graph convolution to sleep stage classification.

◆ C2.2: How to exploit the sleep transition rules between neighboring stages.

GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks

C1: How to determine a suitable graph structure for sleep stage classification?

S1: We propose a novel adaptive sleep graph learning mechanism.

- Integrated with ST-GCN simultaneously in A a unified network architecture.
- Dynamically construct adjacency matrix A.
- Utilize the second term in the loss function to control the sparsity of graph A.

$$\mathbf{x}_{mn} = g(\boldsymbol{x}_m, \boldsymbol{x}_n) = \frac{\exp(\operatorname{ReLU}(\boldsymbol{w}^T | \boldsymbol{x}_m - \boldsymbol{x}_n |))}{\sum_{n=1}^{N} \exp\left(\operatorname{ReLU}(\boldsymbol{w}^T | \boldsymbol{x}_m - \boldsymbol{x}_n |)\right)}$$

$$\mathcal{L}_{ ext{graph_learning}} = \sum_{m,n=1}^N \|oldsymbol{x}_m - oldsymbol{x}_n\|_2^2 A_{mn} + \lambda \|oldsymbol{A}\|_F^2$$

Methods

C2: How to extract spatial-temporal features?

S2: We design a Spatial-Temporal Graph Convolution architecture.

- *a) Spatial dimension*: use graph convolution to extract spatial features.
- Use graph convolution based on spectral graph theory.
- Employ the Chebyshev expansion of graph Laplacian to reduce computational complexity.

C2: How to extract spatial-temporal features?

S2: We design a Spatial-Temporal Graph Convolution architecture.

- *b) Temporal dimension*: employ CNN to perform convolution operation to capture the sleep transition rules.
- c) Spatial-Temporal Attention: automatically extract valuable information.

Dataset:

Montreal Archive of Sleep Studies (MASS)-SS3 dataset ^[7]

- ◆ PSG recordings from 62 healthy subjects (28 male and 34 female).
- Experts classify these PSG recordings into five sleep stages (W, N1, N2, N3, and REM) according to AASM standard.
- We extract DE features from the raw signal.

Stage	W	N1	N2	N3	REM	Total
Samples	6357	4829	29777	7651	10566	59180
Ratio	10.7%	8.2%	50.3%	12.9%	17.9%	100%

Number of samples for each sleep stage

Baseline:

- ◆ [**Dong** *et al.*, **2017**]^[8]: A mixed neural network, which combines multilayer perceptron (MLP) and LSTM, and also compare its performance with RF and SVM.
- ◆ [Supratak *et al.*, 2017]^[3]: A model combines CNN and BiLSTM to capture both time-invariant features and transition rules among sleep stages.
- ◆ [Chambon *et al.*, 2018]^[9]: A temporal sleep stage classification use multivariate and multimodal time series.
- [Phan et al., 2019]^[2]: SeqSleepNet changes the single sleep stage classification problem into a sequence-to-sequence classification problem by using attention-based bidirectional RNN (ARNN) and RNN.
- [Sun *et al.*, 2019]^[10]: A hierarchical neural network, which learns comprehensive features and sequence respectively.
- [Jiang *et al.*, 2019]^[11]: Robust sleep stage classification which uses multimodal decomposition and Hidden Markov Model (HMM) -based refinement.

Comparison with the state-of-the-art models:

	Method	Overall results			F1-score for each class				
		Accuracy	F1-score	Kappa	Wake	N 1	N2	N3	REM
[Dong et al., 2017]	SVM	0.797	0.750	-	0.786	0.487	0.861	0.825	0.792
[Dong et al., 2017]	RF	0.817	0.724	-	0.782	0.351	0.880	0.815	0.794
[Dong et al., 2017]	MLP+LSTM	0.859	0.805	-	0.846	0.563	0.907	0.848	0.861
[Supratak et al., 2017]	CNN+BiLSTM	0.862	0.817	0.800	0.873	0.598	0.903	0.815	0.893
[Chambon <i>et al.</i> , 2018]	CNN	0.739	0.673	0.640	0.730	0.294	0.812	0.765	0.764
[Jiang et al., 2019]	RF+HMM	0.808	0.793	0.710	-	-	-	-	-
[Phan et al., 2019]	ARNN+RNN	0.871	0.833	0.815	-	-	-	-	-
[Sun et al., 2019]	CNN+BiLSTM	0.881	0.824	0.819	0.912	0.551	0.916	0.826	0.914
GraphSleepNet	Adaptive ST-GCN	0.889	0.841	0.834	0.913	0.603	0.921	0.851	0.919

Table 2: The performance comparison of the state-of-the-art approaches on the MASS dataset

Experimental Analysis:

- Adjacency matrix: The proposed adaptive sleep graph learning is superior to all fixed graphs.
- Number of input sleep stage networks T_n : The performance improves as T_n increases, and the best accuracy is achieved when $T_n = 5$.

Contribution:

- ◆ To the best of our knowledge, it is the first attempt to apply ST-GCN for automatic sleep stage classification. Moreover, we propose a novel adaptive sleep graph learning mechanism, which is integrated with ST-GCN simultaneously in a unified network architecture.
- We design a spatial-temporal convolution, which consists of graph convolutions for capturing spatial features and temporal convolutions for capturing the transition among different sleep stages.
- Experimental results demonstrate that the GraphSleepNet achieves state-of-the-art performance in sleep stage classification.

Prospect:

- ◆ The proposed model is a general-framework for multivariate physiological time series.
- ◆ It can be applied to time series classification, prediction and other related fields.

References

- [1] Junning Zhang and Y an Wu. A new method for automatic sleep stage classification. *IEEE transactions on biomedical circuits and systems*, 11(5):1097–1110, 2017.
- [2] Huy Phan, Fernando Andreotti, Navin Cooray, Oliver Y Chén, and Maarten De Vos. Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 27(3):400–410, 2019.
- [3] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. Deepsleepnet: A model for automatic sleep stage scoring based on raw single-channel eeg. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 25(11):1998–2008, 2017.
- [4] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. In *Advances in neural information processing systems*, pages 2224–2232, 2015.
- [5] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In *Advances in Neural Information Processing Systems*, pages 1024–1034, 2017.
- [6] Iber, C., S. Ancoli-Israel, A. Chesson, and S. F. Quan. *The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications.* Westchester, IL:American Academy of Sleep Medicine, 2007.
- [7] Christian O'Reilly, Nadia Gosselin, Julie Carrier, and Tore Nielsen. Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research. *Journal of sleep research*, 23(6):628–635, 2014.
- [8] Hao Dong, Akara Supratak, Wei Pan, Chao Wu, Paul M Matthews, and Yike Guo. Mixed neural network approach for temporal sleep stage classification. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 26(2):324–333, 2017.
- [9] Stanislas Chambon, Mathieu N Galtier, Pierrick J Arnal, Gilles Wainrib, and Alexandre Gramfort. A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 26(4):758–769, 2018.
- [10] Chenglu Sun, Chen Chen, Wei Li, Jiahao Fan, and Wei Chen. A hierarchical neural network for sleep stage classification based on comprehensive feature learning and multi-flow sequence learning. *IEEE journal of biomedical and health informatics*, 2019.
- [11] Dihong Jiang, Y a-nan Lu, MA Y u, and W ANG Y uanyuan. Robust sleep stage classification with single-channel eeg signals using multimodal decomposition and hmm-based refinement. *Expert Systems with Applications*, 121:188–203, 2019.

Beijing Jiaotong University

Thanks!

